Stoichiometric Calculations: Amounts of Reactants and Products

The coefficients in a chemical equation represent numbers of molecules, not masses of molecules. However, when a reaction is to be carried out in the lab, the amounts of substances needed can't be determined by counting molecules directly. Counting is always done by weighing.

Stoichiometry is the study of the quantitative relationships between the amounts of reactants used and products formed by a chemical reaction.

To see how stoichiometry works, consider the combustion of propane. We will consider the question: What mass of oxygen will react completely with 96.1 g of propane?

The first step in any stoichiometry problem is to write the balanced chemical equation for the reaction. In this case, the balanced equation is

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

This can be visualized as

This equation means that 1 mole of $C_{3} H_{8}$ reacts with 5 moles of O_{2} to produce 3 moles of CO_{2} and 4 moles of $\mathrm{H}_{2} \mathrm{O}$.

To use this equation to find the masses of reactants and products, we must be able to convert between masses and moles of substances. Thus, we must first ask: How many moles of propane are present in 96.1 g of propane?

$$
96.1 \mathrm{~g} \mathrm{C}_{3} H_{8} \times \frac{1 \mathrm{~mol} \mathrm{C}_{3} H_{8}}{44.1 \mathrm{~g} \mathrm{C} C_{3} H_{8}}=2.18{\mathrm{~mol} C_{3} H_{8}}^{2}
$$

Next, we must take into account the fact that each mole of propane reacts with 5 moles of oxygen. The best way to do this is to use the balanced equation to construct a mole ratio. In this case, the mole ratio we need is

$$
\frac{5 \mathrm{~mol} \mathrm{O}}{2} \text { } 1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}
$$

Multiplying the number of moles of $C_{3} H_{8}$ by this factor gives the number of moles of O_{2} required:

$$
2.18 \mathrm{~mol} \mathrm{C}_{3} H_{8} \times \frac{5 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}=10.9 \mathrm{~mol} \mathrm{O}_{2}
$$

Notice that the mole ratio is set up so that the moles of $C_{3} H_{8}$ cancel out.
Since the original question asked for the mass of oxygen needed to react with 96.1 g of propane, the last step is to convert the 10.9 moles of O_{2} to grams.

$$
10.9 \mathrm{~mol} \mathrm{O}_{2} \times \frac{32.0 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=349 \mathrm{~g} \mathrm{O}_{2}
$$

Example 1

What mass of carbon dioxide is produced when 96.1 g of propane are combusted with oxygen?

Problem Solving Strategy

Calculating Masses of Reactants and Products in Chemical Reactions

1. Write the balanced equation for the reaction.
2. Convert the known mass of the reactant or product to moles of that substance.
3. Use the balanced equation to set up the appropriate mole ratios.
4. Use the appropriate mole ratios to calculate the number of moles of the desired reactant or product.
5. Convert from moles back to grams if required by the problem.

Example 2

Determine the mass of sodium chloride or table salt (NaCl) produced when 1.25 mol of chlorine gas reacts vigorously with sodium.

Example 3

Ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$, an important fertilizer, produces $\mathrm{N}_{2} \mathrm{O}$ gas and $\mathrm{H}_{2} \mathrm{O}$ when it decomposes. Determine the mass of water produced from the decomposition of 25 g of solid ammonium nitrate.

Stoichiometry Worksheet \#1

1. Sulfuric acid is formed when sulfur dioxide reacts with oxygen and water. Write the balanced chemical equation for the reaction. If $12.5 \mathrm{~mol} \mathrm{SO} 2_{2}$ reacts, how many $\mathrm{mol}_{2} \mathrm{SO}_{4}$ can be produced? How many mol O_{2} is needed?
2. A reaction between methane and sulfur produces carbon disulfide $\left(C S_{2}\right)$, a liquid often used in the production of cellophane.

$$
\ldots \mathrm{CH}_{4}(\mathrm{~g})+\ldots \mathrm{S}_{8}(\mathrm{~s}) \rightarrow \ldots \mathrm{CS}_{2}(\mathrm{l})+\ldots \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

a) Balance the equation.
b) Calculate the $\mathrm{mol} C S_{2}$ produced when $1.5 \mathrm{~mol} S_{8}$ is used.
c) How many mol $\mathrm{H}_{2} \mathrm{~S}$ is produced?
3. Titanium is a transition metal used in many alloys because it is extremely strong and lightweight. Titanium tetrachloride $\left(\mathrm{TiCl}_{4}\right)$ is extracted from titanium oxide using chlorine and coke (carbon).

$$
\mathrm{TiO}_{2}(s)+C(s)+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{TiCl}_{4}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

If you begin with $1.25 \mathrm{~mol} \mathrm{TiO}_{2}$, what mass of Cl_{2} is needed?
4. Sodium chloride is decomposed into the elements sodium and chlorine by means of electrical energy. How many grams of chlorine gas can be obtained from 2.5 mol NaCl ?
5. One in a series of reactions that inflate air bags in automobiles is the decomposition of sodium azide $\left(\mathrm{NaN}_{3}\right)$.

$$
2 \mathrm{NaN}_{3}(s) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

Determine the mass of N_{2} produced if $100 g \mathrm{NaN}_{3}$ is decomposed.
6. In the formation of acid rain, sulfur dioxide reacts with oxygen and water in the air to form sulfuric acid. Write the balanced chemical equation for the reaction. If $2.5 \mathrm{~g} \mathrm{SO}_{2}$ react with excess oxygen and water, how many grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are produced?

